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a b s t r a c t 

We present a conceptually simple framework for object instance segmentation, called Contour Proposal 

Network (CPN), which detects possibly overlapping objects in an image while simultaneously fitting closed 

object contours using a fixed-size representation based on Fourier Descriptors. The CPN can incorporate 

state-of-the-art object detection architectures as backbone networks into a single-stage instance segmen- 

tation model that can be trained end-to-end. We construct CPN models with different backbone net- 

works and apply them to instance segmentation of cells in datasets from different modalities. In our 

experiments, CPNs outperform U-Net , Mask R-CNN and StarDist in instance segmentation accuracy. We 

present variants with execution times suitable for real-time applications. The trained models generalize 

well across different domains of cell types. Since the main assumption of the framework is closed object 

contours, it is applicable to a wide range of detection problems also beyond the biomedical domain. An 

implementation of the model architecture in PyTorch is freely available. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

.1. Motivation 

Instance segmentation is the task of labeling each pixel in an 

mage with an index that represents distinct objects of predefined 

bject classes. This is different from semantic segmentation, which 

ssigns the object class itself to each pixel, and does not distin- 

uish objects of the same type if their shapes touch or overlap. A 

ommon instance segmentation problem in biomedical imaging is 

he detection of cells in microscopic images, in particular for quan- 

itative analysis. While the pixel accuracy of recent cell segmenta- 

ion methods has become sufficient for many imaging setups, de- 

ection accuracy often remains a bottleneck, especially wrt. han- 

ling of touching and overlapping objects. In many biomedical ap- 

lications, both accurate object detection and realistic recovery of 

bject shape are both desirable. However, many instance segmen- 

ation methods define one unique object index per pixel, referring 

o the foreground object only. This results in an incomplete capture 
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f partially superimposed objects, and consequently leads to a mis- 

epresentation of their actual shape (as in e.g. Fig. 5 g top) which in

urn might impair shape-sensible downstream tasks like morpho- 

ogical cell analysis. To avoid such problems, instance segmenta- 

ion methods with appropriate modeling of object boundaries are 

equired. 

Segmentation models should also generalize well to variations 

n the data distribution.This is important for small variations, 

hich inevitably occur in practical lab settings due to different tis- 

ue samples as well as fluctuations of histological protocols and 

igital scanning processes ( Stacke et al., 2019; Yagi, 2011 ). Gener- 

lizability is also important at the scale of data domains, in order 

o allow transfer of trained models to different experiments with 

anageable annotation efforts. 

.2. Related work 

Pixel classifiers Instance segmentation can be achieved using a 

ense pixel classifier such as the U-Net ( Ronneberger et al., 2015 ), 

nd can be cast from a semantic segmentation solution to an 

nstance-agnostic approach using a grouping strategy such as con- 

ected component labeling (CCL). This will group multiple pix- 

ls of the same class into non-overlapping instances. To distin- 

uish touching instances as well, one may introduce narrow back- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Instance segmentation results for selected datasets and methods. The F1 score F1 τ is reported for a 

range of Intersection over Union (IoU) thresholds τ and as the average F1 avg = 1 / 9 
∑ 

τ∈ T F1 τ for thresh- 

olds T = (0 . 5 , 0 . 55 , 0 . 6 , . . . 0 . 9) . 

Model Backbone F1 avg F1 τ= 0 . 15 F1 τ= 0 . 6 F1 τ= 0 . 7 F1 τ= 0 . 8 F1 τ= 0 . 9 

Neuronal Cell Bodies 

CPN R 4 -U22 U-Net 0 . 55 0 . 80 0 . 74 0 . 62 0 . 40 0 . 10 

CPN R 0 -U22 U-Net 0 . 51 0 . 80 0 . 73 0 . 58 0 . 33 0 . 05 

CPN R 4 - R 50 -FPN ResNet-50-FPN 0 . 43 0 . 74 0 . 65 0 . 49 0 . 23 0 . 02 

CPN R 0 - R 50 -FPN ResNet-50-FPN 0 . 42 0 . 73 0 . 64 0 . 48 0 . 22 0 . 02 

U-Net U-Net 0 . 47 0 . 71 0 . 63 0 . 51 0 . 33 0 . 10 

StarDist U-Net 0 . 46 0 . 75 0 . 68 0 . 53 0 . 28 0 . 04 

Mask R-CNN ResNet-50-FPN 0 . 34 0 . 70 0 . 55 0 . 34 0 . 11 0 . 00 

BBBC039 

CPN R 4 -U22 U-Net 0 . 91 0 . 96 0 . 95 0 . 93 0 . 91 0 . 76 

CPN R 0 -U22 U-Net 0 . 90 0 . 96 0 . 95 0 . 93 0 . 90 0 . 72 

CPN R 4 -R50 -FPN ResNet-50-FPN 0 . 90 0 . 95 0 . 94 0 . 93 0 . 90 0 . 74 

CPN R 0 -R50 -FPN ResNet-50-FPN 0 . 90 0 . 95 0 . 94 0 . 93 0 . 89 0 . 71 

U-Net U-Net 0 . 89 0 . 95 0 . 93 0 . 92 0 . 88 0 . 71 

StarDist U-Net 0 . 88 0 . 95 0 . 94 0 . 91 0 . 88 0 . 71 

Mask R-CNN ResNet-50-FPN 0 . 86 0 . 94 0 . 93 0 . 92 0 . 89 0 . 52 

Synthetic Shapes 

CPN R 4 -U22 U-Net 0 . 90 0 . 98 0 . 98 0 . 96 0 . 89 0 . 64 

CPN R 0 -U22 U-Net 0 . 89 0 . 98 0 . 98 0 . 96 0 . 88 0 . 51 

CPN R 4 -R50 -FPN ResNet-50-FPN 0 . 88 0 . 98 0 . 97 0 . 94 0 . 86 0 . 54 

CPN R 0 -R50 -FPN ResNet-50-FPN 0 . 86 0 . 98 0 . 97 0 . 94 0 . 84 0 . 47 

U-Net U-Net 0 . 87 0 . 96 0 . 95 0 . 92 0 . 85 0 . 59 

StarDist U-Net 0 . 87 0 . 97 0 . 96 0 . 93 0 . 85 0 . 52 

Mask R-CNN ResNet-50-FPN 0.85 0.96 0.90 0.85 0.72 0.36 
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round gaps between objects with careful per pixel loss weightings 

 Ronneberger et al., 2015 ). Improved versions define border pix- 

ls as an additional class ( Chen et al., 2016; Guerrero-Pena et al., 

018; Zabawa et al., 2020 ). Such models have demonstrated to seg- 

ent the borders of isolated objects very precisely. However, in 

ase of crowded images, already a few falsely classified pixels can 

erge close-by instances and critically impair the detection result 

 Caicedo et al., 2019 ). Furthermore, this approach misrepresents 

bject shapes in case of overlap. 

Pixel classifiers coupled with shape models. To reach better ro- 

ustness on crowded images, some authors proposed to cou- 

le active contour models with CNN-based segmentation models. 

hierbach et al. (2018) first employed a dense pixel classifier to 

redict probability maps of object centroids. These maps were then 

hresholded to initialize a subsequent active contour segmentation. 

hang et al. (2018) suggested a scheme where a CNN is trained to 

xplicitly predict the energy function for fitting an active contour 

odel to a given object. The contour computation is here attached 

s a black box to the learning loop, so that the conversion from 

ixel to shape space and back is invisible to the network training, 

nd thus not part of the actual learning. Gur et al. (2019) proposed 

o use a neural renderer as a differentiable domain transition from 

olygon to pixels, allowing a full learning path. This way they train 

 U-Net-like CNN that produces 2D displacement fields for polygo- 

al contour evolution with a loss that addresses the segmentation 

s well as ballooning and curvature minimizing forces in the pixel 

omain. While this allows end-to-end training, the actual bound- 

ry representation remains hidden and is not accessible to down- 

tream tasks. 

Dense vs sparse detectors. The above-mentioned solutions have 

n common that they learn object masks in the pixel domain under 

 hidden or decoupled shape model, producing a dense classifica- 

ion by assigning a label to each pixel of an image. An alternative 

s to perform object detection by directly estimating the parame- 

ers of a contour model in its embedding space, and attaching a 

ixel location to the shape descriptor. This way the bounds of an 

ntire object are concentrated at a single pixel, leading to a sparse 
2 
etection scheme and forcing the model to develop an explicit in- 

ernal understanding of instances. This is the main motivation of 

he presented work. For closed contours, pixel masks can then be 

btained by rasterization. Giving direct emphasis (and possibly su- 

ervision) to the shape model, such an approach could provide a 

ore efficient problem representation. 

Bounding box regression. The de facto, standard for modeling 

oundaries in object detection networks are bounding boxes ( Ren 

t al., 2017; Liu et al., 2016; Lin et al., 2017b; Redmon and Farhadi, 

018; Bochkovskiy et al., 2020; Yang et al., 2020 ). Here, the models 

redict at least four outermost object locations. This approach cap- 

ures little information about the object instance beyond location, 

cale and aspect ratio ( Jetley et al., 2017 ). The most established ap-

roach from this category is the Mask R-CNN ( He et al., 2017 ). It

rst detects bounding boxes by regression, and then gathers image 

eatures inside the bounding box to produce pixel masks. 

Regression of shape representations. More detailed shape repre- 

entations have been proposed in recent years as well ( Jetley et al., 

017; Schmidt et al., 2018; Miksys et al., 2019; Xie et al., 2020 ).

losest to our work is the approach of Jetley et al. (2017) , who

ombined the popular YOLO architecture ( Redmon et al., 2016 ) 

ith an additional regression of a decodable shape representa- 

ion for each object proposal. They showed that the integration of 

 higher-order shape reasoning into the network architecture im- 

roves generalization. In particular, it allowed to predict plausible 

asks for previously unseen object classes. Jetley et al. (2017) eval- 

ated three different shape representations, namely fixed-sized bi- 

ary shape masks, a radial representation, and a learned shape en- 

oding. The binary shape masks show quantitatively worse results 

han the other two representations. The radial representation de- 

nes a series of offsets between an anchor pixel and points on its 

ontour, and turned out to be inferior for common object classes in 

atural images. It has also been applied for cell nuclei detection in 

he StarDist architecture ( Schmidt et al., 2018 ), which showed good 

etection accuracy but stays behind the pixel precision achieved 

y U-Nets ( Ronneberger et al., 2015 ). StarDist was extended as Po- 

arMask ( Xie et al., 2020 ) to be applicable to multiclass problems, 
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Fig. 1. The Contour Proposal Network ( CPN ) setup for instance segmentation. An initial backbone network computes feature maps P 1 and P 2 . Based on the low-resolution P 2 
a classification head determines for each pixel if an object is present or not, while the contour regression heads generate object contours, defined in the frequency domain, 

at each pixel. All contour representations that are classified to represent an object are extracted and converted to pixel space using Eq. 1 . The high-resolution P 1 is used to 

regress a refinement tensor that is used during a Local Refinement step ( Algorithm 1 ) that maximizes pixel accuracy. Finally, non-maximum suppression ( NMS ) is applied to 

remove redundant detections. 
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uch as the COCO dataset ( Lin et al., 2014 ). Also, it was coupled

ith a different loss and evaluated with multiple backbone archi- 

ectures. In general, the applicability of the radial model is lim- 

ted to the “star domain”, which excludes many non-convex shapes 

 Dietler et al., 2020 ). Predicting radial representations also involves 

 predefined number of rays, leading to possibly suboptimal sam- 

ling and limited precision of the contour ( Schmidt et al., 2018 ). 

s a third representation, Jetley et al. (2017) train an auto-encoder 

n the Caltech-101 silhouettes dataset to learn a shape embedding 

or the detection network. For this encoder-decoder approach, the 

uthors report difficulties in controlling the detail level of the em- 

edding: Although enlarging the embedding space resulted in bet- 

er preservation of shape details and reduced reconstruction errors, 

t had a negative effect on the overall instance segmentation per- 

ormance, in fact performing below the chosen baseline approach. 

otably, the same baselines were outperformed by Mask R-CNN 

 He et al., 2017 ). Miksys et al. (2019) extended this approach with

n additional distance transform acting as a proxy between de- 

oder and shape image, which allows to superimpose “discs” at 

very pixel location and hence mitigate the impact of falsely pre- 

icted pixels. They also considered the inclusion of the decoder in 

he training process. Despite showing quantitative improvements, 

he pixel precision remains suboptimal. 

.3. The contour proposal network 

Based on existing strengths and weaknesses in the field, we 

ere introduce the Contour Proposal Network (CPN). Similar in spirit 

o the approach of Jetley et al. (2017) , it models instance segmen- 

ation as a sparse detection problem by performing regression of 

bject shape representations at single pixel locations. The model 

rchitecture is depicted in Fig. 1 : A backbone network derives fea- 

ure maps from an input image. For each pixel of the feature map, 

egression heads generate a contour representation, while a classi- 

cation head determines whether an object is present at a given 

ocation. Based on the classifications, a proposal sampling stage 

hen extracts a sparse list of contour representations. By convert- 

ng these to the pixel domain using the fully differentiable Fourier 

ine and cosine transformation, we implicitly enforce the contour 

epresentations to be defined in the frequency domain, inspired by 

lliptical Fourier Descriptors ( Kuhl and Giardina, 1982 ). The result- 

ng contour coordinates are optimized by a local refinement proce- 

ure to further maximize pixel precision using a residual field, pro- 

uced from an additional regression head. This is similar in spirit 

o the displacements fields used by Gur et al. (2019) , but integrates 

ore naturally as the CPN already operates with near-final contour 

roposals in the pixel domain at this stage. The complete frame- 

ork is trained end-to-end across all these stages. As a final infer- 

nce step, non-maximum suppression removes redundant detec- 

ions from the object proposals. 
3 
It is straightforward to set up a CPN model with a different con- 

our model ( Sec. 2.2 ). However, Fourier Descriptors are particularly 

ell suited, as they fulfill highly desirable properties for biomed- 

cal instance segmentation: They provide a low dimensional and 

xed-size representation, can describe complex non-convex shapes 

ith an intuitive adjustment of the level of detail (cf. Fig. 2 ), over-

ome typical sampling problems, ensure closed and continuous 

ontours, can be scaled across different image resolutions in a loss- 

ess manner, and can be decoded into 2d coordinate space without 

equiring additional decoder networks. 

We train CPNs that outperform U-Net , Mask R-CNN and 

tarDist in instance segmentation accuracy in different experi- 

ents. We demonstrate that inference speed of selected CPNs is 

uitable for real-time applications, especially when considering au- 

omatic mixed precision ( amp ). The trained models generalize well 

o datasets from different families of biological cells. 

. Methods 

The Contour Proposal Network ( CPN ) uses five basic building 

locks ( Fig. 1 ). Initially, dense feature maps P 1 ∈ R 

w 1 ×w 1 ×c 1 (high- 

esolution) and P 2 ∈ R 

w 2 ×w 2 ×c 2 (low-resolution) are generated by a 

ackbone CNN which can be freely chosen. From the latent feature 

ap P 2 , a classifier head detects objects, while parallel regression 

eads jointly generate explicit contour representations. The clas- 

ification scores generated by the classifier estimate whether an 

bject exists at the given locations. Contours are modelled as a 

eries of 2d coordinates by applying the Fourier sine and cosine 

ransformation of degree N to the latent outputs of the contour 

egression head, resulting in a fully differentiable, fixed-sized for- 

at for boundary regression ( Sec. 2.2 ). The contour proposals are a 

ense map on the pixel grid, with an h 2 × w 2 × (4 N + 2) tensor of

hape descriptors and an h 2 × w 2 × 1 tensor of corresponding ob- 

ect classification scores. The output resolution h 2 × w 2 can be dif- 

erent and even lower than the input resolution without sacrificing 

ccuracy of the final contour. It effectively defines the maximum 

umber of objects that can be detected in the image. All represen- 

ations that are deemed to describe an object are extracted as a 

ist of contour proposals and mapped to pixel space using Eq. 1 . 

he proposals are then processed by a trainable refinement block to 

aximize fit of contours with image content using high-resolution 

eatures P 1 . The last building block filters redundant detections us- 

ng non-maximum suppression. The entire model is trained end- 

o-end. 

.1. Detection 

A classification head produces a detection score for each con- 

our representation and states whether it represents a present ob- 
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Fig. 2. Contour representation with different settings of the order hyperparameter N. It defines the vector size of the descriptor that is given by 4 N + 2 . The higher the order, 

the more detail is preserved. The 2d contour coordinates are sampled from the descriptor space with Eq. 1 . Even small settings of N yield good approximations of odd and 

non-convex shapes, in this case human neuronal cells, including a curved apical dendrite. 
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1 Note that the use of rounded coordinates prevents contour proposal heads from 

being influenced by the refinement head during training. Also the rounding pro- 

vides a consistent starting point for the refinement. 
ect or not. In the present work we focus on the binary case, and

o not distinguish different object categories. 

.2. Contour representation 

Following Kuhl and Giardina (1982) , we define a 

ontour of degree N as a series of 2d coordinates 

x N (t 1 ) , y N (t 1 )) , . . . (x N (t S ) , y N (t S )) with t s < t s +1 , using the Fourier

ine and cosine transformation 

 N (t) = a 0 + 

N ∑ 

n =1 

(
a n sin 

(
2 nπt 

T 

)
+ b n cos 

(
2 nπt 

T 

))

 N (t) = c 0 + 

N ∑ 

n =1 

(
c n sin 

(
2 nπt 

T 

)
+ d n cos 

(
2 nπt 

T 

))
(1) 

or legibility we omit the subscript of x N and y N in the follow- 

ng. The evolution of the x-coordinate along the contour x (t) is 

arameterized by two series of coefficients a = a 0 , a 1 , . . . a N and 

 = b 1 , . . . b N , with a 0 determining the spatial offset of the contour

n the pixel grid. Accordingly, y (t) is parameterized by coefficients 

 and d . The parameter vector [ a , b , c d ] ∈ R 

4 N+2 hence determines 

 2D object contour. The location parameter t s ∈ [0 , 1] with inter-

al length T = 1 determines at which fraction of the contour a co- 

rdinate is sampled. The order hyperparameter N determines the 

moothness of the contour, with larger N adding higher frequency 

oefficients and thus allowing closer approximations of object con- 

ours ( Fig. 2 ). This formulation always produces closed contours. It 

s differentiable, and both the contour representation and the sam- 

led contour coordinates are fixed in size, given an order N and a 

ample size S. Thus, we can directly regress the parameters of this 

epresentation to predict closed object contours with convolutional 

eural networks. 

The CPN employs two separate regression heads for predicting 

ontour shape { a i , b i , c i , d i | 1 ≤ i ≤ N} and localization in the image

a 0 , c 0 ) . By isolating regression of shape and location, we intend to

reserve translational invariance of the contour representation and 

quivariance of the offset regression. 

The CPN can employ other representations than Fourier De- 

criptors. Generally, it only requires a contour description in vec- 

or format that is either defined in a 2d coordinate space, or can 

e converted to it in a differentiable fashion to ensure end-to-end 

earning. The coordinate representation is essential to perform the 

ocal refinement. The possibly simplest alternative to Fourier De- 

criptors would be given by bounding boxes, which provide a very 

oarse contour description defined by two vertices. In this case, 

he CPN predicts vectors with four values that define the two edge 

oints of a bounding box. A list of box proposals can be sampled, 

efined and filtered with non-maximum suppression in the same 

ay as Fourier Descriptor proposals, which is described in the fol- 

owing sections. 
4 
.3. Proposal sampling 

The classification head decides for each pixel whether an object 

s present. Proposal sampling then extracts all contour representa- 

ions from object locations that were identified. During inference 

his is done using the classification results, and during optimiza- 

ion using the training targets of the classifier. The result is a list of 

ontour proposals, still in Fourier space. As the subsequent stages 

n the CPN work with 2d coordinates, Eq. (1) is used to convert the 

ampled Fourier representations to pixel coordinates. 

.4. Local refinement 

Some cues for optimal boundary placement which can be in- 

erred from the training data are more efficiently encoded at the 

ixel level than in a shape space. As a trivial example, many seg- 

entation problems imply that boundaries should be placed at 

igh gradients, independent of the boundary shape. To provide 

n additional mechanism of encoding such knowledge efficiently 

nd further maximizing the pixel-precision of estimated contours, 

e propose a local refinement of predicted contour coordinates in 

he pixel domain as part of the model architecture, as defined in 

lgorithm 1 . 

lgorithm 1 Local Refinement. Iteratively refine a single contour 

oordinate x, y using refinement tensor v ∈ R 

w ×h ×2 and maximum 

orrection margin σ , assuming 1 ≤ x ≤ w and 1 ≤ y ≤ h . Rounding 

s denoted by �·� . 
1: procedure Refine (x, y, v , r, σ ) 

2: for r iterations do 

3: 
[
x y 

]
← 

[� x � � y � ] + σ tanh 

(
v � x � , � y � 

)
return x, y 

The local refinement provides an additional trainable mecha- 

ism to further fit the predicted series of 2d coordinates towards 

heir targeted ground truth coordinates. To this end we use a 

egression head (e.g. 2 convolutional layers) to generate a two- 

hannel feature map v ∈ R 

w ×h ×2 and effectively look up the val- 

es of v at the location described by each respective coordinate. 

iven a single contour coordinate x, y , the 2d vector v � x (t) � , � y (t) � 
an be added to the rounded coordinate vector � x � , � y � . 1 As this

s optimized to shift coordinates closer to the target, v is implicitly 

rained to compensate for remaining misalignments of boundaries, 

s illustrated in Fig. 3 . To limit the influence of the refinement, we 

se a tanh activation, scaled by σ . The entire local refinement pro- 

edure, consisting of a small regression head and Algorithm 1 , is 

rained simultaneously with all other trainable components of the 

PN. This way the CPN can be trained efficiently and end-to-end. 
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Fig. 3. Local refinement example. (a) illustrates the learned refinement tensor v as 

a vector field, superimposed with the input image. (b) shows a contour proposal 

before and after refinement. The refinement tensor learned to shift contour coordi- 

nates to maximize pixel-precision. (Best viewed in color). 
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When applied multiple times, the corrective refinement step 

hifts contour coordinates towards a targeted location incremen- 

ally. A contour coordinate has then reached its final position once 

ts correction yields zero for all spatial dimensions. Even if applied 

ultiple times, the two channel refinement tensor v is only com- 

uted once. The actual refinement becomes tractable since the CPN 

irectly outputs boundary coordinates. In fact, the procedure can 

e efficiently implemented using fancy indexing , keeping the com- 

utational cost for this procedure relatively low. The local refine- 

ent reduces localization errors of the contour regression and can 

ompensate the exclusion of higher contour frequencies by choos- 

ng small values for the order hyperparameter N. 

.5. Non-maximum suppression 

Similar to other object detection methods ( He et al., 2017; 

edmon et al., 2016; Lin et al., 2017b ) the CPN generates dense 

roposals, thus multiple pixels of the produced output grid may 

epresent the same object. To remove redundant detections dur- 

ng inference, we apply bounding-box non-maximum suppres- 

ion ( NMS ). NMS specifically keeps proposals with a high de- 

ection score, but suppresses proposals with lower scores and a 

ounding box IoU (Intersection over Union) that exceeds a given 

hreshold. The required bounding boxes can be retrieved effi- 

iently for each contour proposal (x (t 1 ) , y (t 1 )) , . . . (x (t S ) , y (t S )) as

 = [ min x ( t ) , min y ( t ) , max x ( t ) , max y ( t ) ] . It turns out that the re- 

undant proposals produced by the CPN are typically almost iden- 

ical, so that the choice of the NMS scheme is not critical (see 

ec. 3.7 ). 

.6. Loss functions 

We define objectives for two components: Detection score and 

ontour prediction. For legibility we present objectives per pixel. 

Detection score. The detection head performs binary classifica- 

ion for each pixel, producing a score that states whether an ob- 

ect instance is present or not at the pixel location. The loss L inst 

or this task is the standard Binary Cross Entropy ( BCE ). 

Contour coordinate loss. At each pixel where a contour should 

e attached, we apply a loss that minimizes the distance between 

round truth contour coordinates and estimated coordinates. For a 

ingle coordinate it is given by 

 coord (x, y, ̂  x , ̂  y ) = 

1 

2 

(| x − ˆ x | 1 + | y − ˆ y | 1 ) . (2)

he contour proposal prediction is trained using 

 contour = 

1 

S 

S ∑ 

s =1 

L coord (x (t s ) , y (t s ) , ̂  x (t s ) , ̂  y (t s )) (3)
5 
ith ground truth contour coordinate x (t s ) , y (t s ) and estimated 

ˆ  (t s ) , ̂  y (t s ) , at random positions t s ∈ [0 , 1] . Coordinates are defined

s in Eq. 1 given targets a , b , c , d and estimates ˆ a , ̂  b , ̂  c and 

ˆ d . Local

efinement is trained accordingly with 

 refine = 

1 

S 

S ∑ 

s =1 

L coord 

(
x (t s ) , y (t s ) , Re f ine ( ̂  x (t s ) , ̂  y (t s )) 

)
(4)

ubstituting ˆ x (t s ) , ̂  y (t s ) with refined coordinates using Algorithm 1 . 

Representation loss. Additionally, we can directly supervise the 

hape parameters in the frequency domain using 

 repr = | β � ( a − ˆ a ) | 1 + | β−0 � ( b − ˆ b ) | 1 + | β � ( c − ˆ c ) | 1 
+ | β−0 � ( d − ˆ d ) | 1 (5) 

ith β−0 denoting the exclusion of β0 from β = [ β0 , . . . βN ] . While 

he objective is already well defined without this representation 

oss, it provides additional regularization of the shape space and 

nables to emphasize specific detail levels by applying individual 

actors βn . An intuitive setting decreases βn with growing n to put 

ore relative emphasis on the coarse contour outlines represented 

y low frequency coefficients. 

CPN loss. Combining the components above, the overall per 

ixel loss is given by 

 CPN = L inst (o) + o(L contour + L refine + λL repr ) (6) 

ith o = 1 for pixels that represent an object and o = 0 otherwise. 

. Experiments and results 

We evaluate the instance segmentation performance of the CPN 

n three datasets ( NCB , BBBC039 , SYNTH ) and compare the results 

ith U-Net and Mask R-CNN as baseline models. Also, the cross- 

ataset generalization performance is examined by training mod- 

ls on BBBC039 and testing them on a fourth dataset, BBBC041 . To 

etter understand the effects of employing the CPN feature space, 

his experiment includes a U-Net that is first trained as the back- 

one of a CPN. Finally, we compare inference speeds of different 

odels. 

.1. Datasets 

NCB - Neuronal Cell Bodies. This dataset consists of 82 grayscale 

mage patches from microscopic scans of cellbody-stained brain 

issue sections, with annotations of approximately 29,0 0 0 cell bod- 

es. Fig. 4 a shows examples. It includes significant variations in cell 

hape, intensity, and object overlap, as well as challenging con- 

gurations like occlusions, noise, varying contrast and histologi- 

al artifacts. Brain samples come from the body donor program 

f the Anatomical Institute of Düsseldorf in accordance with le- 

al and ethical requirements. 2 Tissue sections were stained using 



E. Upschulte, S. Harmeling, K. Amunts et al. Medical Image Analysis 77 (2022) 102371 

Fig. 5. Example patches from different datasets with reference annotations (5th row) and detections computed by the proposed CPN R 4 -U22 (4th row), U-Net (3rd row) and 

Mask R-CNN (2nd row) models. 
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 modified Merker stain ( Merker, 1983 ). Each tissue section has 

n approximate thickness of 20 μ and is captured with a resolu- 

ion of 1 μ using a high-throughput light-microscopic scanner (Tis- 

ueScope HS, Huron Digital Pathology Inc.). Note that cell bodies 

n this dataset are always continuously and fully annotated even 

nder occlusions, in order to allow a model to learn mostly real- 

stic morphologies. Image patches were manually labeled for cell 

ody instances by a group of experts in our institute. This was 

erformed using a custom web-based annotation software, which 

llowed to enter overlapping pixel labels and to inspect the 3d 

ontext provided by depth focusing. To minimize highly subjective 

nnotations of ambiguous cases, the software includes collabora- 

ive feedback features that allow consensus among multiple ex- 

erts during annotation. The dataset is publicly accessible via the 

ssociated GitHub repository. 3 

BBBC039 - Nuclei of U2OS cells in a chemical screen. This is 

 dataset from the Broad Institute Bioimage Benchmark Collection 

 Ljosa et al., 2012 ). It consists of 200 grayscale images from a

igh-throughput chemical screen on U2OS cells, depicting approx- 

mately 23,0 0 0 annotated nuclei. Fig. 4 b shows examples. 

BBBC041 - P. vivax (malaria) infected human blood smears. 

lso from the Broad Bioimage Benchmark Collection ( Ljosa et al., 

012 ), this dataset consists of 1364 images depicting approximately 

0,0 0 0 Malaria infected human blood smear cells, annotated with 

ounding boxes. Fig. 4 d shows examples. 

SYNTH - Synthetic shapes. This dataset consists of 4129 grayscale 

mages that show a large variety of different synthetic shapes in 

ifferent sizes. It contains approximately 1,305,0 0 0 annotated ob- 

ects. Fig. 4 c shows examples. Shapes include simple structures, 

uch as circles, ellipses and triangles, as well as more complex 

on-convex structures. Objects and background vary in intensity 

nd texture, with objects showing mostly darker intensities than 

ackground. Similar to the NBC dataset mentioned above, objects 

an overlap and are fully annotated, even if occluded. Thus, a sin- 

le pixel can belong to more than one instance. 
3 git.io/JOnWX 

6 
.2. Baseline methods 

We evaluate performance against the following baseline meth- 

ds: 

• U-Net ( Ronneberger et al., 2015 ) is an encoder-decoder net- 

work with lateral skip-connections and a de facto standard for 

biomedical image segmentation (cf. Sec. 1.2 ). In addition to its 

original definition we use batch normalization after each con- 

volutional layer. Following Caicedo et al. (2019) , the network 

classifies each pixel into one of three classes: cell, background 

and boundary. 
• Mask R-CNN ( He et al., 2017 ) is a widely used instance seg- 

mentation method that proposes bounding boxes for each ob- 

ject, filters proposals by non-maximum suppression and fi- 

nally produces masks based on proposed bounding box regions 

(cf. Sec. 1.2 ). The implementation used in our experiments is 

based on torchvision , a Python package that includes popular 

model architectures and is part of PyTorch . 
• StarDist ( Schmidt et al., 2018 ) is a popular cell detection 

method that uses star-convex polygons to sparsely repre- 

sent object shapes (cf. Sec. 1.2 ). Similar to CPN and Mask 

R-CNN , it applies non-maximum suppression to remove re- 

dundant detections. We use the official implementation of 

Schmidt et al. (2018) that is available on GitHub. 

.3. CPN training 

For comparability, we instantiate CPN models with the same 

ackbone architectures as the baseline models, and train them 

ith the same number of epochs, data size, batch size and data 

ugmentation. In particular, we use four CPN variants: 

• CPN R 4 -R50 -FPN uses a Feature Pyramid Network ( FPN ) 

( Lin et al., 2017a ) with a 50 layer residual architecture 

( He et al., 2016 , ResNet-50) as its backbone and applies 4 

iterations of contour refinement ( Sec. 2.4 ) 
• CPN R 0 -R50 -FPN is CPN R 4 -R50 -FPN with contour refinement 

disabled 

http://www.git.io/JOnWX
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Table 2 

Cross-dataset evaluation of object detection performance. We report F1 scores for models trained on 

BBBC039 dataset and tested on BBBC041 dataset. Results are based on bounding boxes using same 

metrics as Table 1 . The pretrained U-Net was trained as part of CPN R 4 -U22. 

Model Backbone F1 avg F1 τ= 0 . 5 F1 τ= 0 . 6 F1 τ= 0 . 7 F1 τ= 0 . 8 F1 τ= 0 . 9 

CPN R 4 -U22 U-Net 0 . 54 0 . 83 0 . 81 0 . 70 0 . 29 0.02 

U-Net Pretrained U-Net 0.52 0.72 0.71 0.67 0 . 39 0 . 07 

U-Net U-Net 0.45 0.62 0.60 0.57 0.33 0.06 

Mask R-CNN ResNet-50-FPN 0.49 0.77 0.75 0.66 0.24 0.02 
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• CPN R 4 -U22 uses a 22 layer U-Net as a backbone, which is set 

up like the baseline described in Sec. 3.2 , but omitting its final 

output layer. It uses 4 iterations of contour refinement 
• CPN R 0 -U22 is CPN R 4 -U22 with contour refinement disabled 

For assessing inference speed, we use additional backbone ar- 

hitectures ( Sec. 3.6 ). 

We supervise both the contour representation and the sampled 

ontour coordinates. As the contour representation is well defined, 

e calculate ground truth representations on the fly and use them 

o guide the network during training. Using Eq. 1 with uniform 

ampling t 1 , . . . t S ( t s ∈ [0 , 1] ) we retrieve contour coordinates from

oth ground truth and prediction for supervision. The sample size 

yperparameter S influences precision and performance by fixing 

he number of coordinates used during training. We choose S = 64 

ere. 

While it is also possible to use the derivable and non- 

arametric formula from Kuhl and Giardina (1982) to derive the 

ontour representation from another latent space, we did not ob- 

erve any benefits and thus omit this possibility. 

During training, we dedicate the center region of each object 

o contain the contour representations. The size of such a re- 

ion is defined as a fraction of the object size. Overlapping re- 

ions are characterized as ambiguous and excluded. Generally, it 

s necessary to assign at least one pixel in proximity to each 

bject. 

.4. Detection and segmentation performance 

To evaluate the detection performance and the shape quality of 

he produced contours we use the harmonic mean of precision and 

ecall F1 τ = T P τ / (T P τ + 

1 
2 (F P τ + F N τ )) for differ ent Intersection 

ver Union (IoU) thresholds τ . The IoU threshold τ ∈ [0 , 1] defines 

he minimal IoU that is required for two shapes to be counted 

s a match. Each ground truth shape can be a match for at most 

ne predicted shape. A true positive ( TP ) is a predicted shape that 

atches a ground truth shape, a false positive (FP) is a shape that 

oes not match any ground truth shape and a false negative (FN) 

s a ground truth shape that does not match any predicted shape. 

1 τ scores with a small τ = 0 . 5 quantify the coarse detection per- 

ormance of a model, yielding good scores if the model correctly 

nfers object presence along with a roughly matching contour. F1 τ
cores with a larger τ = 0 . 9 quantify the fine detection perfor- 

ance, allowing little deviance from the target shape. We define 

1 avg = 1 / 9 
∑ 

τ∈ T F1 τ for thresholds T = (0 . 5 , 0 . 55 , 0 . 6 , . . . 0 . 9) ,

o measure the average performance for different 

hresholds. 

Table 1 shows quantitative results of the CPN , U-Net , Mask R- 

NN and StarDist on three different datasets. The CPN with local 

efinement yields highest scores on all datasets. Local refinement 

urther increases the average F1 scores, especially for high thresh- 

lds τ , thus increasing the quality of the contours as expected. 

n the datasets BBBC039 and SYNTH CPN R 4 -U22 outperforms the 

aseline models for all thresholds. 
7 
.5. Cross-dataset generalization 

We assessed how well the baseline and CPN models general- 

ze to variations in the input data distribution as follows: Mod- 

ls are trained for instance segmentation on the BBBC039 dataset. 

ithout any retraining or adaptation, models are then applied to 

BBC041 . Generalization capabilities are then evaluated with the 

1 score on the basis of bounding boxes derived from the re- 

pective instance segmentation results. This provides a quantita- 

ive characterization of detection and segmentation performance 

nder transfer to different data domains. To comply with the ba- 

ic characteristics of BBBC039 , we converted the images to in- 

erted grayscale images and applied a fixed contrast adjustment 

nd downscaling. 

Results are shown in Table 2 . CPN models consistently show 

igher scores than baseline methods. For small IoU thresholds such 

s τ = 0 . 50 , the scores of CPN and Mask R-CNN models are partic-

larly distinguished from U-Net. Fig. 6 shows detected instances 

rom different methods on two typical examples, illustrating the 

roblems in cross-dataset generalization. CPN R 4 -U22 tends to de- 

ect conservatively, preferring some false negatives for avoiding 

alse positives. U-Net shows more false positives, sometimes seem- 

ngly detecting noise. For Mask R-CNN , contours are less precise 

han for the others, and overall less true instances are detected. 

Reusing trained CPN backbones for different tasks We also ex- 

mined the generalization performance of a U-Net when its en- 

oder and decoder are trained as the backbone of CPN R 4 -U22, and 

hen reused with a new final prediction layer in a U-Net to output 

egmentation results. For retraining, the encoder part is frozen, to 

nsure that the CPN feature space is kept intact. This case is re- 

orted in the second row of Table 2 . All scores are significantly 

igher compared to the U-Net without such pre-training. For high 

oU thresholds, e.g. τ ∈ { 0 . 8 , 0 . 9 } , this variant even provides over-

ll highest scores. However, as the generalization performance in- 

reased, the F1 avg score on the BBBC039 test set dropped from 0.89 

o 0.87. 

.6. Inference speed 

We computed the number of frames per seconds ( FPS ) on the 

BBC039 test set for different models. Each image has a size of 

20 × 696 . To improve the precision of the measurement we reit- 

rated over the test set multiple times. Pre- and post-processing 

teps were excluded from the timings, as well as initial warm-up 

uns. This experiment was performed in single-precision ( float32 ) 

nd automatic mixed precision ( amp ) via PyTorch’s autocast fea- 

ure. The latter automatically selects CUDA operations to run in 

alf-precision ( float16 ) to improve performance while aiming to 

aintain accuracy. 

Results are presented in Table 3 . In terms of inference speed, 

PN R 4 - R 50 -FPN outperforms both Mask R-CNN - R 50 -FPN and U-

et when applied with normal single-precision ( float32 ). As this 

PN reached 29.9 FPS, it qualifies for many online video processing 

pplications. When applied with automatic mixed precision ( amp ) 
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Fig. 6. Cross-dataset generalization examples from three different models. The models were trained on BBBC039 and applied to images from BBBC041 without retraining or 

adaptation. Two samples are depicted above. 

Fig. 7. Local refinement equalizes redundant contour proposals. Both images illus- 

trate results of a CPN without non-maximum suppression. All contour proposals are 

superimposed. (a) shows proposals before refinement, (b) shows the same propos- 

als after refinement. Redundant contour proposals that are initially only similar are 

typically almost identical after the refinement step. (Best viewed in color). 

Table 3 

Inference speeds of different models. We report the number of frames per second 

( FPS ) for the BBBC039 test set with an image size of 520 × 696 . We measure times 

with single-precision ( float32 ) and and automatic mixed precision ( amp ). The ini- 

tial run and possible post-processing steps are excluded. All models were imple- 

mented and executed as PyTorch models on an NVIDIA A100. We denote ResNet by 

‘R’, ResNeXt by ‘X’ and U-Net by ‘U’ for brevity. 

Model FPS FPS (amp) 

CPN R 0 -R50 -FPN 30.19 37.57 

CPN R 4 -R50 -FPN 29.86 36.17 

CPN R 0 - X 50 -FPN 27.20 36.83 

U-Net 23.42 77.71 

CPN R 4 -U22 ( P 2 stride 2) 15.41 42.20 

Mask R-CNN - R 50 -FPN 13.74 - 

CPN R 4 - X 101 -FPN 13.39 25.66 

CPN R 4 -U22 12.71 26.72 
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Fig. 8. Similarity of redundant contour proposals. For each contour that is selected 

by non-maximum suppression we measure the average Intersection over Union 

with respect to redundant proposals, both before and after refinement. The his- 

togram illustrates the results for 11k neuronal cell bodies. The refinement equalizes 

redundant contours, shifting the distribution of IoUs towards 1. This reduces the 

influence that choices of NMS might have on the model’s quantitative performance. 
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he CPN R 4 -U22, that uses a stride of 2 in the classification and 

egression head, achieved 42.2 FPS - the highest performance of 

he tested CPN models and the second highest overall performance 

mong the tested models. U-Net , which shares the same backbone, 

howed the best inference speed performance using amp. 

The influence of local refinement on inference speed was eval- 

ated for the R 50 -FPN based CPN, for which four refinement it- 

rations reduced the result by 0.33 FPS, when used with single- 

recision ( float32 ). 
8 
.7. Influence of non-maximum suppression 

Non-maximum suppression is an integral part of many object 

etection pipelines and its choices can have significant impact on 

 model’s quantitative performance ( Bodla et al., 2017 ). To under- 

tand the influence that the NMS scheme may have on a particu- 

ar CPN model, we investigate the similarity of contours that are 

eemed to be redundant. This is relevant, as choices between sim- 

lar contour proposals are less critical than choices between dis- 

imilar ones. Fig. 8 shows results for the detection of neuronal cell 

odies. For each contour that is selected by non-maximum sup- 

ression, we measured the average Intersection over Union with 

espect to redundant proposals both before and after refinement. 

he histogram shows that contour proposals are often similar with 

 majority of IoUs larger than 0.85 before refinement is applied. 

he refinement further equalizes similar contours with a majority 

f IoUs close to the maximum of 1. This effect is also illustrated in 

ig. 7 . 



E. Upschulte, S. Harmeling, K. Amunts et al. Medical Image Analysis 77 (2022) 102371 

4

f

e

t

a

m

R

a

t

a

G

U

p

t

b

M

p

c

a

o

f

s

c

r

c

i

C

d

t

w

I

t

b

j

d

i

t

s

t

a

o

o

t

t

p

F

t

s

o

b

t

t

a

m

p

s

c

F

p

t

h

s

f

h

u

h

s

C

C

g

fi

s

t

m

a

q

t

p

o

(  

e

r

p

p

h

t

p

h

F

o

l

v

a

D

r

t

C

i

W

i

i

i

I

t

A

z

9

p

(

w

l

t

w

. Discussion and conclusion 

We present the Contour Proposal Network (CPN), a framework 

or segmenting object instances by proposing contours which are 

ncoded as fixed-sized representations based on Fourier Descrip- 

ors. CPN models can be constructed with different backbone CNN 

rchitectures to produce image features. We assessed the perfor- 

ance of four different CPN variants, em ploying both U-Net and 

esNet-FPN backbones, against U-Net , Mask R-CNN and StarDist 

s baselines. All U-Net based CPNs outperformed the U-Net coun- 

erpart in terms of F1 avg instance segmentation performance on 

ll three tested datasets, both with and without local refinement. 

iven that CPN and U-Net share the same backbone architecture 

22, the results indicate that the CPN provides a more effective 

roblem description. This is also supported by the comparison of 

he CPN and Mask R-CNN in our experiments. For both tested back- 

one architectures, the CPNs showed consistently higher F1 avg than 

ask R-CNN - R 50 -FPN . Given the same U-Net backbone, CPN out- 

erformed StarDist , both with and without local refinement. This 

onfirms that the Fourier based contour representation is a suit- 

ble choice for the CPN . 

The CPN models employ a highly entangled representation of 

bject shapes and sparse detections: The networks are effectively 

orced to concentrate the description of a complete object into a 

ingle pixel by anchoring the boundary representation to a spe- 

ific coordinate. This requires them to form an intrinsic spatial 

elationship between whole objects and their parts, which en- 

ourages compact and robust representations with good general- 

zation properties. This principle shares some commonalities with 

apsule Networks ( Sabour et al., 2017 ), which also aim to con- 

ense instances of objects or object parts into vector representa- 

ions coupled with a detection score. The effects can be observed 

hen looking at examples such as the ones depicted in Fig. 5 : 

f boundaries are invisible or poorly defined, CPN models exploit 

he learned knowledge of boundary shapes to find highly plausi- 

le separations (e.g. Fig. 5 e, g, h). Very small and touching ob- 

ects, which are often overseen by pixel-based methods, are well 

etected (e.g. Fig. 5 a, b). Separation of clusters of kissing objects 

s typically modelled quite accurately, reproducing gaps between 

ouching shapes very consistently (e.g. Fig. 5 c, d). Thin structures, 

uch as dendrites, can be modeled accurately (e.g. Fig. 5 f). Discon- 

inuities that may occur with pixel-based methods can be avoided, 

s proposed contours are continuous and closed by design. 

While leading to accurate object representations, experiments 

n cross-dataset generalization showed that the learned shape pri- 

rs are not overly restrictive and transfer well to different data dis- 

ributions. CPN models were even able to produce plausible con- 

ours for previously unseen objects as long as their basic mor- 

hology is consistent with the training examples. In particular the 

 1 τ=0 . 50 margin between CPN R 4 -U22 and U-Net of 0.21 suggests 

hat the better performing CPN formed a more universal intrin- 

ic understanding of what an instance is. In this context, we also 

bserved that the CPN training has a positive influence on the 

ackbone CNNs to produce a feature space with good generaliza- 

ion properties: A pixel-classifying U-Net showed significantly bet- 

er performance on our cross-dataset evaluation when its encoder 

nd decoder were trained as a CPN backbone. 

By modeling the contour representation in the frequency do- 

ain, CPNs can bypass several sampling problems occurring in 

revious works, like selecting the optimal sampling rate in pixel 

pace. Instead, by setting the order of the Fourier series, the user 

an specify different levels of contour complexity in a natural way. 

urthermore, the representation allows to generate arbitrary out- 

ut resolutions without compromising detection accuracy. 

The local refinement step, which is an integrated and fully 

rainable part of the CPN, supports contour proposals to achieve 
9 
igh pixel precision despite the regularization imposed by the 

hape model. We measured a notable increase in performance 

or high IoU thresholds when applying refinement, indicating that 

igh contour frequencies can be modeled efficiently using a resid- 

al field. While the refinement can improve contour details, it only 

ad a minor influence on inference speed in our experiment. We 

ee the refinement as an important complementary module of the 

PN framework. 

Non-maximum suppression (NMS) is an important part of the 

PN, as it removes redundant proposals. In general, there is no 

uarantee that proposals with a high detection score are the best 

tting ones. Bodla et al. (2017) show that NMS choices can in fact 

ignificantly influence quantitative model performance. However, 

he results in Sec. 3.7 demonstrate that for the CPN, local refine- 

ent leads to a strong equalization of redundant contour propos- 

ls in practice. As a consequence, the NMS step is here mostly re- 

uired to pick one of several almost identical proposals. The par- 

icular choices of NMS thus have only little influence on the model 

erformance for the CPN. 

In terms of inference speed, CPN R 4 -R50 -FPN outperforms all 

ther tested methods when applied with normal single-precision 

 float32 ). With 29.9 FPS and an image size of 520 × 696 it is

ven suitable for online processing tasks, especially as it produces 

eady-to-use object instance descriptions, not requiring additional 

ost-processing steps like connected component labeling. The ex- 

eriments also showed that local refinement adds little time over- 

ead, in the case of R 50 -FPN based CPN four refinement itera- 

ions increased pixel-precision while costing less than half a frame 

er second. For automatic mixed precision CPN R 4 -U22 with strided 

eads showed fastest inference speed among all CPNs with 42.2 

PS. 

Since the only assumption of the proposed approach are closed 

bject contours, it is applicable to a wide range of detection prob- 

ems, also beyond the biomedical domain, that have not been in- 

estigated in the present work. 

An implementation of the model architecture in PyTorch is 

vailable at https://github.com/FZJ- INM1- BDA/celldetection . 
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